1.阻塞/非阻塞、同步/异步(网络IO)

阻塞/非阻塞、同步/异步(网络IO)

数据就绪:根据系统IO操作的就绪状态

  • 阻塞

  • 非阻塞

数据读写:根据应用程序和内核的交互方式

  • 同步

  • 异步

陈硕:在处理 IO 的时候,阻塞和非阻塞都是同步 IO,只有使用了特殊的 API 才是异步 IO。

image-20220717233456139

image-20220717234840065

一个典型的网络IO接口调用,分为两个阶段,分别是“数据就绪” 和 “数据读写”,数据就绪阶段分为阻塞和非阻塞,表现得结果就是,阻塞当前线程或是直接返回。

同步表示A向B请求调用一个网络IO接口时(或者调用某个业务逻辑API接口时),数据的读写都是由请求方A自己来完成的(不管是阻塞还是非阻塞);异步表示A向B请求调用一个网络IO接口时(或者调用某个业务逻辑API接口时),向B传入请求的事件以及事件发生时通知的方式,A就可以处理其它逻辑了,当B监听到事件处理完成后,会用事先约定好的通知方式,通知A处理结果。

5.2 Unix/Linux上的5种IO模型

a.阻塞 blocking (BIO)

调用者调用了某个函数,等待这个函数返回,期间什么也不做,不停的去检查这个函数有没有返回,必须等这个函数返回才能进行下一步动作。

image-20220717235855889

b.非阻塞 non-blocking(NIO)

非阻塞等待,每隔一段时间就去检测IO事件是否就绪。没有就绪就可以做其他事。非阻塞I/O执行系统调用总是立即返回,不管事件是否已经发生,若事件没有发生,则返回-1,此时可以根据 errno 区分这两种情况,对于accept,recv 和 send,事件未发生时,errno 通常被设置成 EAGAIN。

image-20220718000028084

c.IO复用(IO multiplexing)

Linux 用 select/poll/epoll 函数实现 IO 复用模型,这些函数也会使进程阻塞,但是和阻塞IO所不同的是这些函数可以同时阻塞多个IO操作。而且可以同时对多个读操作、写操作的IO函数进行检测。直到有数 据可读或可写时,才真正调用IO操作函数

image-20220718000243045

d.信号驱动(signal-driven)

Linux 用套接口进行信号驱动 IO,安装一个信号处理函数,进程继续运行并不阻塞,当IO事件就绪,进程收到SIGIO 信号,然后处理 IO 事件。

image-20220718000404751

内核在第一个阶段是异步,在第二个阶段是同步;与非阻塞IO的区别在于它提供了消息通知机制,不需要用户进程不断的轮询检查,减少了系统API的调用次数,提高了效率。

e.异步(asynchronous)

Linux中,可以调用 aio_read 函数告诉内核描述字缓冲区指针和缓冲区的大小、文件偏移及通知的方式,然后立即返回,当内核将数据拷贝到缓冲区后,再通知应用程序

image-20220718000534332

5.3 Web服务器简介及Http协议

一个 Web Server 就是一个服务器软件(程序),或者是运行这个服务器软件的硬件(计算机)。其主要功能是通过 HTTP 协议与客户端(通常是浏览器(Browser))进行通信,来接收,存储,处理来自客户端的 HTTP 请求,并对其请求做出 HTTP 响应,返回给客户端其请求的内容(文件、网页等)或返回一个 Error 信息

image-20220718001127832

通常用户使用 Web 浏览器与相应服务器进行通信。在浏览器中键入“域名”或“IP地址:端口号”,浏览器则先将你的域名解析成相应的 IP 地址或者直接根据你的IP地址向对应的 Web 服务器发送一个 HTTP 请求。这一过程首先要通过 TCP 协议的三次握手建立与目标 Web 服务器的连接,然后 HTTP 协议生成针对目标 Web 服务器的 HTTP 请求报文,通过 TCP、IP 等协议发送到目标 Web 服务器上。

HTTP协议

简介

超文本传输协议(Hypertext Transfer Protocol,HTTP)是一个简单的CS的请求 - 响应协议,它通常运行在TCP 之上。它指定了客户端可能发送给服务器什么样的消息以及得到什么样的响应。请求和响应消息的头以 ASCII 形式给出;而消息内容则具有一个类似 MIME 的格式。HTTP是万维网的数据通信的基础。

HTTP的发展是由蒂姆·伯纳斯-李于1989年在欧洲核子研究组织(CERN)所发起。HTTP的标准制定由万维网协会(World Wide Web Consortium,W3C)和互联网工程任务组(Internet Engineering TaskForce,IETF)进行协调,最终发布了一系列的RFC,其中最著名的是1999年6月公布的 RFC 2616,定义了HTTP协议中现今广泛使用的一个版本——HTTP 1.1。

概述

HTTP 是一个客户端终端(用户)和服务器端(网站)请求和应答的标准(TCP)。通过使用网页浏览器、网络爬虫或者其它的工具,客户端发起一个HTTP请求到服务器上指定端口(默认端口为80)。我们称这个客户端为用户代理程序(user agent)。应答的服务器上存储着一些资源,比如 HTML 文件和图像。我们称这个应答服务器为源服务器(origin server)。在用户代理和源服务器中间可能存在多个“中间层”,比如代理服务器、网关或者隧道(tunnel)。

尽管 TCP/IP 协议是互联网上最流行的应用,HTTP 协议中,并没有规定必须使用它或它支持的层。事实上,HTTP可以在任何互联网协议上,或其他网络上实现。HTTP 假定其下层协议提供可靠的传输。因此,任何能够提供这种保证的协议都可以被其使用。因此也就是其在 TCP/IP 协议族使用 TCP 作为其传输层。

通常,由HTTP客户端发起一个请求,创建一个到服务器指定端口(默认是80端口)的 TCP 连接。HTTP服务器则在那个端口监听客户端的请求。一旦收到请求,服务器会向客户端返回一个状态,比如”HTTP/1.1 200 OK”,以及返回的内容,如请求的文件、错误消息、或者其它信息。

工作原理

HTTP 协议定义 Web 客户端如何从 Web 服务器请求 Web 页面,以及服务器如何把 Web 页面传送给客户端。HTTP 协议采用了请求/响应模型。客户端向服务器发送一个请求报文,请求报文包含请求的方法、URL、协议版本、请求头部和请求数据。服务器以一个状态行作为响应,响应的内容包括协议的版本、成功或者错误代码、服务器信息、响应头部和响应数据。

以下是 HTTP 请求/响应的步骤:

  1. 客户端连接到 Web 服务器
    一个HTTP客户端,通常是浏览器,与 Web 服务器的 HTTP 端口(默认为 80 )建立一个 TCP 套接字连接。例如,http://www.baidu.com。(URL)

  2. 发送 HTTP 请求
    通过 TCP 套接字,客户端向 Web 服务器发送一个文本的请求报文,一个请求报文请求行、请求头部、空行和请求数据 4 部分组成。

  3. 服务器接受请求并返回 HTTP 响应
    Web 服务器解析请求,定位请求资源。服务器将资源复本写到 TCP 套接字,由客户端读取。一个响应状态行、响应头部、空行和响应数据 4 部分组成。

  4. 释放连接 TCP 连接
    若 connection 模式为 close,则服务器主动关闭 TCP连接,客户端被动关闭连接,释放 TCP 连接;若connection 模式为 keepalive,则该连接会保持一段时间,在该时间内可以继续接收请求;

  5. 客户端浏览器解析 HTML 内容
    客户端浏览器首先解析状态行,查看表明请求是否成功的状态代码。然后解析每一个响应头,响应
    头告知以下为若干字节的 HTML 文档和文档的字符集。客户端浏览器读取响应数据 HTML,根据
    HTML 的语法对其进行格式化,并在浏览器窗口中显示。

例如:在浏览器地址栏键入URL,按下回车之后会经历以下流程:

  1. 浏览器向 DNS 服务器请求解析该 URL 中的域名所对应的 IP 地址;
  2. 解析出 IP 地址后,根据该 IP 地址和默认端口 80,和服务器建立 TCP 连接;
  3. 浏览器发出读取文件( URL 中域名后面部分对应的文件)的 HTTP 请求,该请求报文作为 TCP 三次握手的第三个报文的数据发送给服务器;
  4. 服务器对浏览器请求作出响应,并把对应的 HTML 文本发送给浏览器;
  5. 释放 TCP 连接;
  6. 浏览器将该 HTML 文本并显示内容。

HTTP 协议是基于 TCP/IP 协议之上的应用层协议,基于 请求-响应 的模式。HTTP 协议规定,请求从客户端发出,最后服务器端响应该请求并返回。换句话说,肯定是先从客户端开始建立通信的,服务器端在没有接收到请求之前不会发送响应。

image-20220718095202692

image-20220718095153165

image-20220718095213622

HTTP 请求方法

HTTP/1.1 协议中共定义了八种方法(也叫“动作”)来以不同方式操作指定的资源:

  1. GET:向指定的资源发出“显示”请求。使用 GET 方法应该只用在读取数据,而不应当被用于产生“副作用”的操作中,例如在 Web Application 中。其中一个原因是 GET 可能会被网络蜘蛛等随意访问。
  2. HEAD:与 GET 方法一样,都是向服务器发出指定资源的请求。只不过服务器将不传回资源的本文部分。它的好处在于,使用这个方法可以在不必传输全部内容的情况下,就可以获取其中“关于该资源的信息”(元信息或称元数据)。
  3. POST:向指定资源提交数据,请求服务器进行处理(例如提交表单或者上传文件)。数据被包含在请求本文中。这个请求可能会创建新的资源或修改现有资源,或二者皆有。
  4. PUT:向指定资源位置上传其最新内容。
  5. DELETE:请求服务器删除 Request-URI 所标识的资源。
  6. TRACE:回显服务器收到的请求,主要用于测试或诊断。
  7. OPTIONS:这个方法可使服务器传回该资源所支持的所有 HTTP 请求方法。用’*’来代替资源名称,向 Web 服务器发送 OPTIONS 请求,可以测试服务器功能是否正常运作。
  8. CONNECT:HTTP/1.1 协议中预留给能够将连接改为管道方式的代理服务器。通常用于SSL加密服务器的链接(经由非加密的 HTTP 代理服务器)。

HTTP状态码

所有HTTP响应的第一行都是状态行,依次是当前HTTP版本号,3位数字组成的状态代码,以及描述状态的短语,彼此由空格分隔。

状态代码的第一个数字代表当前响应的类型:

  • 1xx消息——请求已被服务器接收,继续处理
  • 2xx成功——请求已成功被服务器接收、理解、并接受
  • 3xx重定向——需要后续操作才能完成这一请求
  • 4xx请求错误——请求含有词法错误或者无法被执行
  • 5xx服务器错误——服务器在处理某个正确请求时发生错误

虽然 RFC 2616 中已经推荐了描述状态的短语,例如”200 OK”,”404 Not Found”,但是WEB开发者仍然能够自行决定采用何种短语,用以显示本地化的状态描述或者自定义信息。

image-20220718102726568


5.4 服务器编程基本框架

image-20220718103155738

模块 功能
IO处理单元 处理客户连接,读写网络数据
逻辑单元 业务进程或线程
网络存储单元 数据库、文件或缓存
请求队列 各单元之间的通信方式

I/O 处理单元是服务器管理客户连接的模块。它通常要完成以下工作:等待并接受新的客户连接,接收客户数据,将服务器响应数据返回给客户端。但是数据的收发不一定在 I/O 处理单元中执行,也可能在逻辑单元中执行,具体在何处执行取决于事件处理模式。

一个逻辑单元通常是一个进程或线程。它分析并处理客户数据,然后将结果传递给 I/O 处理单元或者直接发送给客户端(具体使用哪种方式取决于事件处理模式)。服务器通常拥有多个逻辑单元,以实现对多个客户任务的并发处理。

网络存储单元可以是数据库、缓存和文件,但不是必须的。

请求队列是各单元之间的通信方式的抽象。I/O 处理单元接收到客户请求时,需要以某种方式通知一个逻辑单元来处理该请求。同样,多个逻辑单元同时访问一个存储单元时,也需要采用某种机制来协调处理竞态条件。请求队列通常被实现为池的一部分。

两种高效的事件处理模式

服务器程序通常需要处理三类事件:I/O 事件、信号及定时事件。有两种高效的事件处理模式:Reactor和 Proactor,同步 I/O 模型通常用于实现 Reactor 模式,异步 I/O 模型通常用于实现 Proactor 模式。

Reactor模式 (反应堆)

要求主线程(I/O处理单元)只负责监听文件描述符上是否有事件发生,有的话就立即将该事件通知工作线程(逻辑单元),将 socket 可读可写事件放入请求队列,交给工作线程处理。除此之外,主线程不做任何其他实质性的工作。读写数据,接受新的连接,以及处理客户请求均在工作线程中完成。

使用同步 I/O(以 epoll_wait 为例)实现的 Reactor 模式的工作流程是:

  1. 主线程往 epoll 内核事件表中注册 socket 上的读就绪事件。
  2. 主线程调用 epoll_wait 等待 socket 上有数据可读。
  3. 当 socket 上有数据可读时, epoll_wait 通知主线程。主线程则将 socket 可读事件放入请求队列。
  4. 睡眠在请求队列上的某个工作线程被唤醒,它从 socket 读取数据,并处理客户请求,然后往 epoll内核事件表中注册该 socket 上的写就绪事件。
  5. 当主线程调用 epoll_wait 等待 socket 可写。
  6. 当 socket 可写时,epoll_wait 通知主线程。主线程将 socket 可写事件放入请求队列。
  7. 睡眠在请求队列上的某个工作线程被唤醒,它往 socket 上写入服务器处理客户请求的结果。

Reactor 模式的工作流程:

image-20220718104011617

Proactor模式

Proactor 模式将所有 I/O 操作都交给主线程和内核来处理(进行读、写),工作线程仅仅负责业务逻辑。使用异步 I/O 模型(以 aio_read 和 aio_write 为例)实现的 Proactor 模式的工作流程是:

  1. 主线程调用 aio_read 函数向内核注册 socket 上的读完成事件,并告诉内核用户读缓冲区的位置,以及读操作完成时如何通知应用程序(这里以信号为例)。
  2. 主线程继续处理其他逻辑。
  3. 当 socket 上的数据被读入用户缓冲区后,内核将向应用程序发送一个信号,以通知应用程序数据已经可用。
  4. 应用程序预先定义好的信号处理函数选择一个工作线程来处理客户请求。工作线程处理完客户请求后,调用 aio_write 函数向内核注册 socket 上的写完成事件,并告诉内核用户写缓冲区的位置,以及写操作完成时如何通知应用程序。
  5. 主线程继续处理其他逻辑。
  6. 当用户缓冲区的数据被写入 socket 之后,内核将向应用程序发送一个信号,以通知应用程序数据已经发送完毕。
  7. 应用程序预先定义好的信号处理函数选择一个工作线程来做善后处理,比如决定是否关闭 socket。

Proactor 模式的工作流程:

image-20220718110332425

模拟Proactor模式

使用同步 I/O 方式模拟出 Proactor 模式。原理是:主线程执行数据读写操作,读写完成之后,主线程向工作线程通知这一”完成事件“。那么从工作线程的角度来看,它们就直接获得了数据读写的结果,接下来要做的只是对读写的结果进行逻辑处理。

使用同步 I/O 模型(以 epoll_wait为例)模拟出的 Proactor 模式的工作流程如下:

  1. 主线程往 epoll 内核事件表中注册 socket 上的读就绪事件。
  2. 主线程调用 epoll_wait 等待 socket 上有数据可读。
  3. 当 socket 上有数据可读时,epoll_wait 通知主线程。主线程从 socket 循环读取数据,直到没有更多数据可读,然后将读取到的数据封装成一个请求对象并插入请求队列。
  4. 睡眠在请求队列上的某个工作线程被唤醒,它获得请求对象并处理客户请求,然后往 epoll 内核事件表中注册 socket 上的写就绪事件。
  5. 主线程调用 epoll_wait 等待 socket 可写。
  6. 当 socket 可写时,epoll_wait 通知主线程。主线程往 socket 上写入服务器处理客户请求的结果。

同步 I/O 模拟 Proactor 模式的工作流程:

image-20220718110517234


5.5线程池

线程池是由服务器预先创建的一组子线程,线程池中的线程数量应该和 CPU 数量差不多。线程池中的所有子线程都运行着相同的代码。当有新的任务到来时,主线程将通过某种方式选择线程池中的某一个子线程来为之服务。相比与动态的创建子线程,选择一个已经存在的子线程的代价显然要小得多。至于主线程选择哪个子线程来为新任务服务,则有多种方式:

  • 主线程使用某种算法来主动选择子线程。最简单、最常用的算法是随机算法和 Round Robin(轮流选取)算法,但更优秀、更智能的算法将使任务在各个工作线程中更均匀地分配,从而减轻服务器的整体压力。
  • 主线程和所有子线程通过一个共享的工作队列来同步,子线程都睡眠在该工作队列上。当有新的任务到来时,主线程将任务添加到工作队列中。这将唤醒正在等待任务的子线程,不过只有一个子线程将获得新任务的”接管权“,它可以从工作队列中取出任务并执行之,而其他子线程将继续睡眠在工作队列上。

线程池的一般模型为:

image-20220718110732722

线程池中的线程数量最直接的限制因素是中央处理器(CPU)的处理器(processors/cores)的数量N :如果你的CPU是4-cores的,对于CPU密集型的任务(如视频剪辑等消耗CPU计算资源的任务)来说,那线程池中的线程数量最好也设置为4(或者+1防止其他因素造成的线程阻塞);对于IO密集型的任务,一般要多于CPU的核数,因为线程间竞争的不是CPU的计算资源而是IO,IO的处理一般较慢,多于cores数的线程将为CPU争取更多的任务,不至在线程处理IO的过程造成CPU空闲导致资源浪费。

  • 空间换时间,浪费服务器的硬件资源,换取运行效率。
  • 池是一组资源的集合,这组资源在服务器启动之初就被完全创建好并初始化,这称为静态资源。
  • 当服务器进入正式运行阶段,开始处理客户请求的时候,如果它需要相关的资源,可以直接从池中获取,无需动态分配。
  • 当服务器处理完一个客户连接后,可以把相关的资源放回池中,无需执行系统调用释放资源。
// locker.h
#ifndef LOCKER_H
#define LOCKER_H

#include <exception>
#include <pthread.h>
#include <semaphore.h>

// 线程同步机制封装类

// 互斥锁类
class locker {
public:
locker() {
if(pthread_mutex_init(&m_mutex, NULL) != 0) {
throw std::exception();
}
}

~locker() {
pthread_mutex_destroy(&m_mutex);
}

bool lock() {
return pthread_mutex_lock(&m_mutex) == 0;
}

bool unlock() {
return pthread_mutex_unlock(&m_mutex) == 0;
}

pthread_mutex_t *get()
{
return &m_mutex;
}

private:
pthread_mutex_t m_mutex;
};


// 条件变量类
class cond {
public:
cond(){
if (pthread_cond_init(&m_cond, NULL) != 0) {
throw std::exception();
}
}
~cond() {
pthread_cond_destroy(&m_cond);
}

bool wait(pthread_mutex_t *m_mutex) {
int ret = 0;
ret = pthread_cond_wait(&m_cond, m_mutex);
return ret == 0;
}
bool timewait(pthread_mutex_t *m_mutex, struct timespec t) {
int ret = 0;
ret = pthread_cond_timedwait(&m_cond, m_mutex, &t);
return ret == 0;
}
bool signal() {
return pthread_cond_signal(&m_cond) == 0;
}
bool broadcast() {
return pthread_cond_broadcast(&m_cond) == 0;
}

private:
pthread_cond_t m_cond;
};


// 信号量类
class sem {
public:
sem() {
if( sem_init( &m_sem, 0, 0 ) != 0 ) {
throw std::exception();
}
}
sem(int num) {
if( sem_init( &m_sem, 0, num ) != 0 ) {
throw std::exception();
}
}
~sem() {
sem_destroy( &m_sem );
}
// 等待信号量
bool wait() {
return sem_wait( &m_sem ) == 0;
}
// 增加信号量
bool post() {
return sem_post( &m_sem ) == 0;
}
private:
sem_t m_sem;
};

#endif
// threadpool.h
#ifndef THREADPOOL_H
#define THREADPOOL_H

#include <list>
#include <cstdio>
#include <exception>
#include <pthread.h>
#include "locker.h"

// 线程池类,将它定义为模板类是为了代码复用,模板参数T是任务类
template<typename T>
class threadpool {
public:
/*thread_number是线程池中线程的数量,max_requests是请求队列中最多允许的、等待处理的请求的数量*/
threadpool(int thread_number = 8, int max_requests = 10000);
~threadpool();
bool append(T* request);

private:
/*工作线程运行的函数,它不断从工作队列中取出任务并执行之*/
static void* worker(void* arg);
void run();

private:
// 线程的数量
int m_thread_number;

// 描述线程池的数组,大小为m_thread_number
pthread_t * m_threads;

// 请求队列中最多允许的、等待处理的请求的数量
int m_max_requests;

// 请求队列
std::list< T* > m_workqueue;

// 保护请求队列的互斥锁
locker m_queuelocker;

// 是否有任务需要处理
sem m_queuestat;

// 是否结束线程
bool m_stop;
};
// 构造函数
template< typename T >
threadpool< T >::threadpool(int thread_number, int max_requests) :
m_thread_number(thread_number), m_max_requests(max_requests),
m_stop(false), m_threads(NULL) {

if((thread_number <= 0) || (max_requests <= 0) ) {
throw std::exception();
}

m_threads = new pthread_t[m_thread_number];
if(!m_threads) {
throw std::exception();
}

// 创建thread_number 个线程,并将他们设置为脱离线程。
for ( int i = 0; i < thread_number; ++i ) {
printf( "create the %dth thread\n", i);
if(pthread_create(m_threads + i, NULL, worker, this ) != 0) {
delete [] m_threads;
throw std::exception();
}

if( pthread_detach( m_threads[i] ) ) {
delete [] m_threads;
throw std::exception();
}
}
}
// 析构函数
template< typename T >
threadpool< T >::~threadpool() {
delete [] m_threads;
m_stop = true;
}

template< typename T >
bool threadpool< T >::append( T* request )
{
// 操作工作队列时一定要加锁,因为它被所有线程共享。
m_queuelocker.lock();
if ( m_workqueue.size() > m_max_requests ) {
m_queuelocker.unlock();
return false;
}
m_workqueue.push_back(request);
m_queuelocker.unlock();
m_queuestat.post();
return true;
}

template< typename T >
void* threadpool< T >::worker( void* arg )
{
threadpool* pool = ( threadpool* )arg;
pool->run();
return pool;
}

template< typename T >
void threadpool< T >::run() {

while (!m_stop) {
m_queuestat.wait();
m_queuelocker.lock();
if ( m_workqueue.empty() ) {
m_queuelocker.unlock();
continue;
}
T* request = m_workqueue.front();
m_workqueue.pop_front();
m_queuelocker.unlock();
if ( !request ) {
continue;
}
request->process();
}

}

#endif
// main.cpp
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <stdio.h>
#include <unistd.h>
#include <errno.h>
#include <string.h>
#include <fcntl.h>
#include <stdlib.h>
#include <sys/epoll.h>
#include "locker.h"
#include "threadpool.h"
#include "http_conn.h"

#define MAX_FD 65536 // 最大的文件描述符个数
#define MAX_EVENT_NUMBER 10000 // 监听的最大的事件数量

// 添加文件描述符
extern void addfd( int epollfd, int fd, bool one_shot );
extern void removefd( int epollfd, int fd );

void addsig(int sig, void( handler )(int)){
struct sigaction sa;
memset( &sa, '\0', sizeof( sa ) );
sa.sa_handler = handler;
sigfillset( &sa.sa_mask );
assert( sigaction( sig, &sa, NULL ) != -1 );
}

int main( int argc, char* argv[] ) {

if( argc <= 1 ) {
printf( "usage: %s port_number\n", basename(argv[0]));
return 1;
}
// 获取端口号
int port = atoi( argv[1] );
// 对SIGPIE信号进行处理
addsig( SIGPIPE, SIG_IGN );

threadpool< http_conn >* pool = NULL;
try {
pool = new threadpool<http_conn>;
} catch( ... ) {
return 1;
}

http_conn* users = new http_conn[ MAX_FD ];

int listenfd = socket( PF_INET, SOCK_STREAM, 0 );

int ret = 0;
struct sockaddr_in address;
address.sin_addr.s_addr = INADDR_ANY;
address.sin_family = AF_INET;
address.sin_port = htons( port );

// 端口复用
int reuse = 1;
setsockopt( listenfd, SOL_SOCKET, SO_REUSEADDR, &reuse, sizeof( reuse ) );
ret = bind( listenfd, ( struct sockaddr* )&address, sizeof( address ) );
ret = listen( listenfd, 5 );

// 创建epoll对象,和事件数组,添加
epoll_event events[ MAX_EVENT_NUMBER ];
int epollfd = epoll_create( 5 );
// 添加到epoll对象中
addfd( epollfd, listenfd, false );
http_conn::m_epollfd = epollfd;

while(true) {

int number = epoll_wait( epollfd, events, MAX_EVENT_NUMBER, -1 );

if ( ( number < 0 ) && ( errno != EINTR ) ) {
printf( "epoll failure\n" );
break;
}

for ( int i = 0; i < number; i++ ) {

int sockfd = events[i].data.fd;

if( sockfd == listenfd ) {

struct sockaddr_in client_address;
socklen_t client_addrlength = sizeof( client_address );
int connfd = accept( listenfd, ( struct sockaddr* )&client_address, &client_addrlength );

if ( connfd < 0 ) {
printf( "errno is: %d\n", errno );
continue;
}

if( http_conn::m_user_count >= MAX_FD ) {
// 目前 连接数满了, 给客户端写一个服务器正忙的信息
close(connfd);
continue;
}
// 将新的客户的数据初始化,放到数组里
users[connfd].init( connfd, client_address);

} else if( events[i].events & ( EPOLLRDHUP | EPOLLHUP | EPOLLERR ) ) {
// 对方异常断开
users[sockfd].close_conn();

} else if(events[i].events & EPOLLIN) {
// 一次性把所有数据都读完
if(users[sockfd].read()) {
pool->append(users + sockfd);
} else {
users[sockfd].close_conn();
}

} else if( events[i].events & EPOLLOUT ) {
// 一次性写完所有数据
if( !users[sockfd].write() ) {
users[sockfd].close_conn();
}

}
}
}

close( epollfd );
close( listenfd );
delete [] users;
delete pool;
return 0;
}
// http_conn.h
#ifndef HTTPCONNECTION_H
#define HTTPCONNECTION_H

#include <unistd.h>
#include <signal.h>
#include <sys/types.h>
#include <sys/epoll.h>
#include <fcntl.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <assert.h>
#include <sys/stat.h>
#include <string.h>
#include <pthread.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/mman.h>
#include <stdarg.h>
#include <errno.h>
#include "locker.h"
#include <sys/uio.h>

class http_conn
{
public:
static const int FILENAME_LEN = 200; // 文件名的最大长度
static const int READ_BUFFER_SIZE = 2048; // 读缓冲区的大小
static const int WRITE_BUFFER_SIZE = 1024; // 写缓冲区的大小

// HTTP请求方法,这里只支持GET
enum METHOD {GET = 0, POST, HEAD, PUT, DELETE, TRACE, OPTIONS, CONNECT};

/*
解析客户端请求时,主状态机的状态
CHECK_STATE_REQUESTLINE:当前正在分析请求行
CHECK_STATE_HEADER:当前正在分析头部字段
CHECK_STATE_CONTENT:当前正在解析请求体
*/
enum CHECK_STATE { CHECK_STATE_REQUESTLINE = 0, CHECK_STATE_HEADER, CHECK_STATE_CONTENT };

/*
服务器处理HTTP请求的可能结果,报文解析的结果
NO_REQUEST : 请求不完整,需要继续读取客户数据
GET_REQUEST : 表示获得了一个完成的客户请求
BAD_REQUEST : 表示客户请求语法错误
NO_RESOURCE : 表示服务器没有资源
FORBIDDEN_REQUEST : 表示客户对资源没有足够的访问权限
FILE_REQUEST : 文件请求,获取文件成功
INTERNAL_ERROR : 表示服务器内部错误
CLOSED_CONNECTION : 表示客户端已经关闭连接了
*/
enum HTTP_CODE { NO_REQUEST, GET_REQUEST, BAD_REQUEST, NO_RESOURCE, FORBIDDEN_REQUEST, FILE_REQUEST, INTERNAL_ERROR, CLOSED_CONNECTION };

// 从状态机的三种可能状态,即行的读取状态,分别表示
// 1.读取到一个完整的行 2.行出错 3.行数据尚且不完整
enum LINE_STATUS { LINE_OK = 0, LINE_BAD, LINE_OPEN };
public:
http_conn(){}
~http_conn(){}
public:
void init(int sockfd, const sockaddr_in& addr); // 初始化新接受的连接
void close_conn(); // 关闭连接
void process(); // 处理客户端请求
bool read();// 非阻塞读
bool write();// 非阻塞写
private:
void init(); // 初始化连接
HTTP_CODE process_read(); // 解析HTTP请求
bool process_write( HTTP_CODE ret ); // 填充HTTP应答

// 下面这一组函数被process_read调用以分析HTTP请求
HTTP_CODE parse_request_line( char* text );
HTTP_CODE parse_headers( char* text );
HTTP_CODE parse_content( char* text );
HTTP_CODE do_request();
char* get_line() { return m_read_buf + m_start_line; }
LINE_STATUS parse_line();

// 这一组函数被process_write调用以填充HTTP应答。
void unmap();
bool add_response( const char* format, ... );
bool add_content( const char* content );
bool add_content_type();
bool add_status_line( int status, const char* title );
bool add_headers( int content_length );
bool add_content_length( int content_length );
bool add_linger();
bool add_blank_line();

public:
static int m_epollfd; // 所有socket上的事件都被注册到同一个epoll内核事件中,所以设置成静态的
static int m_user_count; // 统计用户的数量

private:
int m_sockfd; // 该HTTP连接的socket和对方的socket地址
sockaddr_in m_address;

char m_read_buf[ READ_BUFFER_SIZE ]; // 读缓冲区
int m_read_idx; // 标识读缓冲区中已经读入的客户端数据的最后一个字节的下一个位置
int m_checked_idx; // 当前正在分析的字符在读缓冲区中的位置
int m_start_line; // 当前正在解析的行的起始位置

CHECK_STATE m_check_state; // 主状态机当前所处的状态
METHOD m_method; // 请求方法

char m_real_file[ FILENAME_LEN ]; // 客户请求的目标文件的完整路径,其内容等于 doc_root + m_url, doc_root是网站根目录
char* m_url; // 客户请求的目标文件的文件名
char* m_version; // HTTP协议版本号,我们仅支持HTTP1.1
char* m_host; // 主机名
int m_content_length; // HTTP请求的消息总长度
bool m_linger; // HTTP请求是否要求保持连接

char m_write_buf[ WRITE_BUFFER_SIZE ]; // 写缓冲区
int m_write_idx; // 写缓冲区中待发送的字节数
char* m_file_address; // 客户请求的目标文件被mmap到内存中的起始位置
struct stat m_file_stat; // 目标文件的状态。通过它我们可以判断文件是否存在、是否为目录、是否可读,并获取文件大小等信息
struct iovec m_iv[2]; // 我们将采用writev来执行写操作,所以定义下面两个成员,其中m_iv_count表示被写内存块的数量。
int m_iv_count;

int bytes_to_send; // 将要发送的数据的字节数
int bytes_have_send; // 已经发送的字节数
};

#endif

// http_conn.c
#include "http_conn.h"

// 定义HTTP响应的一些状态信息
const char* ok_200_title = "OK";
const char* error_400_title = "Bad Request";
const char* error_400_form = "Your request has bad syntax or is inherently impossible to satisfy.\n";
const char* error_403_title = "Forbidden";
const char* error_403_form = "You do not have permission to get file from this server.\n";
const char* error_404_title = "Not Found";
const char* error_404_form = "The requested file was not found on this server.\n";
const char* error_500_title = "Internal Error";
const char* error_500_form = "There was an unusual problem serving the requested file.\n";

// 网站的根目录
const char* doc_root = "/home/nowcoder/webserver/resources";

int setnonblocking( int fd ) {
int old_option = fcntl( fd, F_GETFL );
int new_option = old_option | O_NONBLOCK;
fcntl( fd, F_SETFL, new_option );
return old_option;
}

// 向epoll中添加需要监听的文件描述符
void addfd( int epollfd, int fd, bool one_shot ) {
epoll_event event;
event.data.fd = fd;
event.events = EPOLLIN | EPOLLRDHUP;
if(one_shot)
{
// 防止同一个通信被不同的线程处理
event.events |= EPOLLONESHOT;
}
epoll_ctl(epollfd, EPOLL_CTL_ADD, fd, &event);
// 设置文件描述符非阻塞
setnonblocking(fd);
}

// 从epoll中移除监听的文件描述符
void removefd( int epollfd, int fd ) {
epoll_ctl( epollfd, EPOLL_CTL_DEL, fd, 0 );
close(fd);
}

// 修改文件描述符,重置socket上的EPOLLONESHOT事件,以确保下一次可读时,EPOLLIN事件能被触发
void modfd(int epollfd, int fd, int ev) {
epoll_event event;
event.data.fd = fd;
event.events = ev | EPOLLET | EPOLLONESHOT | EPOLLRDHUP;
epoll_ctl( epollfd, EPOLL_CTL_MOD, fd, &event );
}

// 所有的客户数
int http_conn::m_user_count = 0;
// 所有socket上的事件都被注册到同一个epoll内核事件中,所以设置成静态的
int http_conn::m_epollfd = -1;

// 关闭连接
void http_conn::close_conn() {
if(m_sockfd != -1) {
removefd(m_epollfd, m_sockfd);
m_sockfd = -1;
m_user_count--; // 关闭一个连接,将客户总数量-1
}
}

// 初始化连接,外部调用初始化套接字地址
void http_conn::init(int sockfd, const sockaddr_in& addr){
m_sockfd = sockfd;
m_address = addr;

// 端口复用
int reuse = 1;
setsockopt( m_sockfd, SOL_SOCKET, SO_REUSEADDR, &reuse, sizeof( reuse ) );
addfd( m_epollfd, sockfd, true );
m_user_count++;
init();
}

void http_conn::init()
{

bytes_to_send = 0;
bytes_have_send = 0;

m_check_state = CHECK_STATE_REQUESTLINE; // 初始状态为检查请求行
m_linger = false; // 默认不保持链接 Connection : keep-alive保持连接

m_method = GET; // 默认请求方式为GET
m_url = 0;
m_version = 0;
m_content_length = 0;
m_host = 0;
m_start_line = 0;
m_checked_idx = 0;
m_read_idx = 0;
m_write_idx = 0;

bzero(m_read_buf, READ_BUFFER_SIZE);
bzero(m_write_buf, READ_BUFFER_SIZE);
bzero(m_real_file, FILENAME_LEN);
}

// 循环读取客户数据,直到无数据可读或者对方关闭连接
bool http_conn::read() {
if( m_read_idx >= READ_BUFFER_SIZE ) {
return false;
}
int bytes_read = 0;
while(true) {
// 从m_read_buf + m_read_idx索引出开始保存数据,大小是READ_BUFFER_SIZE - m_read_idx
bytes_read = recv(m_sockfd, m_read_buf + m_read_idx,
READ_BUFFER_SIZE - m_read_idx, 0 );
if (bytes_read == -1) {
if( errno == EAGAIN || errno == EWOULDBLOCK ) {
// 没有数据
break;
}
return false;
} else if (bytes_read == 0) { // 对方关闭连接
return false;
}
m_read_idx += bytes_read;
}
return true;
}

// 解析一行,判断依据\r\n
http_conn::LINE_STATUS http_conn::parse_line() {
char temp;
for ( ; m_checked_idx < m_read_idx; ++m_checked_idx ) {
temp = m_read_buf[ m_checked_idx ];
if ( temp == '\r' ) {
if ( ( m_checked_idx + 1 ) == m_read_idx ) {
return LINE_OPEN;
} else if ( m_read_buf[ m_checked_idx + 1 ] == '\n' ) {
m_read_buf[ m_checked_idx++ ] = '\0';
m_read_buf[ m_checked_idx++ ] = '\0';
return LINE_OK;
}
return LINE_BAD;
} else if( temp == '\n' ) {
if( ( m_checked_idx > 1) && ( m_read_buf[ m_checked_idx - 1 ] == '\r' ) ) {
m_read_buf[ m_checked_idx-1 ] = '\0';
m_read_buf[ m_checked_idx++ ] = '\0';
return LINE_OK;
}
return LINE_BAD;
}
}
return LINE_OPEN;
}

// 解析HTTP请求行,获得请求方法,目标URL,以及HTTP版本号
http_conn::HTTP_CODE http_conn::parse_request_line(char* text) {
// GET /index.html HTTP/1.1
m_url = strpbrk(text, " \t"); // 判断第二个参数中的字符哪个在text中最先出现
if (! m_url) {
return BAD_REQUEST;
}
// GET\0/index.html HTTP/1.1
*m_url++ = '\0'; // 置位空字符,字符串结束符
char* method = text;
if ( strcasecmp(method, "GET") == 0 ) { // 忽略大小写比较
m_method = GET;
} else {
return BAD_REQUEST;
}
// /index.html HTTP/1.1
// 检索字符串 str1 中第一个不在字符串 str2 中出现的字符下标。
m_version = strpbrk( m_url, " \t" );
if (!m_version) {
return BAD_REQUEST;
}
*m_version++ = '\0';
if (strcasecmp( m_version, "HTTP/1.1") != 0 ) {
return BAD_REQUEST;
}
/**
* http://192.168.110.129:10000/index.html
*/
if (strncasecmp(m_url, "http://", 7) == 0 ) {
m_url += 7;
// 在参数 str 所指向的字符串中搜索第一次出现字符 c(一个无符号字符)的位置。
m_url = strchr( m_url, '/' );
}
if ( !m_url || m_url[0] != '/' ) {
return BAD_REQUEST;
}
m_check_state = CHECK_STATE_HEADER; // 检查状态变成检查头
return NO_REQUEST;
}

// 解析HTTP请求的一个头部信息
http_conn::HTTP_CODE http_conn::parse_headers(char* text) {
// 遇到空行,表示头部字段解析完毕
if( text[0] == '\0' ) {
// 如果HTTP请求有消息体,则还需要读取m_content_length字节的消息体,
// 状态机转移到CHECK_STATE_CONTENT状态
if ( m_content_length != 0 ) {
m_check_state = CHECK_STATE_CONTENT;
return NO_REQUEST;
}
// 否则说明我们已经得到了一个完整的HTTP请求
return GET_REQUEST;
} else if ( strncasecmp( text, "Connection:", 11 ) == 0 ) {
// 处理Connection 头部字段 Connection: keep-alive
text += 11;
text += strspn( text, " \t" );
if ( strcasecmp( text, "keep-alive" ) == 0 ) {
m_linger = true;
}
} else if ( strncasecmp( text, "Content-Length:", 15 ) == 0 ) {
// 处理Content-Length头部字段
text += 15;
text += strspn( text, " \t" );
m_content_length = atol(text);
} else if ( strncasecmp( text, "Host:", 5 ) == 0 ) {
// 处理Host头部字段
text += 5;
text += strspn( text, " \t" );
m_host = text;
} else {
printf( "oop! unknow header %s\n", text );
}
return NO_REQUEST;
}

// 我们没有真正解析HTTP请求的消息体,只是判断它是否被完整的读入了
http_conn::HTTP_CODE http_conn::parse_content( char* text ) {
if ( m_read_idx >= ( m_content_length + m_checked_idx ) )
{
text[ m_content_length ] = '\0';
return GET_REQUEST;
}
return NO_REQUEST;
}

// 主状态机,解析请求
http_conn::HTTP_CODE http_conn::process_read() {
LINE_STATUS line_status = LINE_OK;
HTTP_CODE ret = NO_REQUEST;
char* text = 0;
while (((m_check_state == CHECK_STATE_CONTENT) && (line_status == LINE_OK))
|| ((line_status = parse_line()) == LINE_OK)) {
// 获取一行数据
text = get_line();
m_start_line = m_checked_idx;
printf( "got 1 http line: %s\n", text );

switch ( m_check_state ) {
case CHECK_STATE_REQUESTLINE: {
ret = parse_request_line( text );
if ( ret == BAD_REQUEST ) {
return BAD_REQUEST;
}
break;
}
case CHECK_STATE_HEADER: {
ret = parse_headers( text );
if ( ret == BAD_REQUEST ) {
return BAD_REQUEST;
} else if ( ret == GET_REQUEST ) {
return do_request();
}
break;
}
case CHECK_STATE_CONTENT: {
ret = parse_content( text );
if ( ret == GET_REQUEST ) {
return do_request();
}
line_status = LINE_OPEN;
break;
}
default: {
return INTERNAL_ERROR;
}
}
}
return NO_REQUEST;
}

// 当得到一个完整、正确的HTTP请求时,我们就分析目标文件的属性,
// 如果目标文件存在、对所有用户可读,且不是目录,则使用mmap将其
// 映射到内存地址m_file_address处,并告诉调用者获取文件成功
http_conn::HTTP_CODE http_conn::do_request()
{
// "/home/nowcoder/webserver/resources"
strcpy( m_real_file, doc_root );
int len = strlen( doc_root );
strncpy( m_real_file + len, m_url, FILENAME_LEN - len - 1 );
// 获取m_real_file文件的相关的状态信息,-1失败,0成功
if ( stat( m_real_file, &m_file_stat ) < 0 ) {
return NO_RESOURCE;
}

// 判断访问权限
if ( ! ( m_file_stat.st_mode & S_IROTH ) ) {
return FORBIDDEN_REQUEST;
}

// 判断是否是目录
if ( S_ISDIR( m_file_stat.st_mode ) ) {
return BAD_REQUEST;
}

// 以只读方式打开文件
int fd = open( m_real_file, O_RDONLY );
// 创建内存映射
m_file_address = ( char* )mmap( 0, m_file_stat.st_size, PROT_READ, MAP_PRIVATE, fd, 0 );
close( fd );
return FILE_REQUEST;
}

// 对内存映射区执行munmap操作
void http_conn::unmap() {
if( m_file_address )
{
munmap( m_file_address, m_file_stat.st_size );
m_file_address = 0;
}
}

// 写HTTP响应
bool http_conn::write()
{
int temp = 0;

if ( bytes_to_send == 0 ) {
// 将要发送的字节为0,这一次响应结束。
modfd( m_epollfd, m_sockfd, EPOLLIN );
init();
return true;
}

while(1) {
// 分散写
temp = writev(m_sockfd, m_iv, m_iv_count);
if ( temp <= -1 ) {
// 如果TCP写缓冲没有空间,则等待下一轮EPOLLOUT事件,虽然在此期间,
// 服务器无法立即接收到同一客户的下一个请求,但可以保证连接的完整性。
if( errno == EAGAIN ) {
modfd( m_epollfd, m_sockfd, EPOLLOUT );
return true;
}
unmap();
return false;
}

bytes_have_send += temp;
bytes_to_send -= temp;

if (bytes_have_send >= m_iv[0].iov_len)
{
m_iv[0].iov_len = 0;
m_iv[1].iov_base = m_file_address + (bytes_have_send - m_write_idx);
m_iv[1].iov_len = bytes_to_send;
}
else
{
m_iv[0].iov_base = m_write_buf + bytes_have_send;
m_iv[0].iov_len = m_iv[0].iov_len - temp;
}

if (bytes_to_send <= 0)
{
// 没有数据要发送了
unmap();
modfd(m_epollfd, m_sockfd, EPOLLIN);

if (m_linger)
{
init();
return true;
}
else
{
return false;
}
}

}


}

// 往写缓冲中写入待发送的数据
bool http_conn::add_response( const char* format, ... ) {
if( m_write_idx >= WRITE_BUFFER_SIZE ) {
return false;
}
va_list arg_list;
va_start( arg_list, format );
int len = vsnprintf( m_write_buf + m_write_idx, WRITE_BUFFER_SIZE - 1 - m_write_idx, format, arg_list );
if( len >= ( WRITE_BUFFER_SIZE - 1 - m_write_idx ) ) {
return false;
}
m_write_idx += len;
va_end( arg_list );
return true;
}

bool http_conn::add_status_line( int status, const char* title ) {
return add_response( "%s %d %s\r\n", "HTTP/1.1", status, title );
}

bool http_conn::add_headers(int content_len) {
add_content_length(content_len);
add_content_type();
add_linger();
add_blank_line();
}

bool http_conn::add_content_length(int content_len) {
return add_response( "Content-Length: %d\r\n", content_len );
}

bool http_conn::add_linger()
{
return add_response( "Connection: %s\r\n", ( m_linger == true ) ? "keep-alive" : "close" );
}

bool http_conn::add_blank_line()
{
return add_response( "%s", "\r\n" );
}

bool http_conn::add_content( const char* content )
{
return add_response( "%s", content );
}

bool http_conn::add_content_type() {
return add_response("Content-Type:%s\r\n", "text/html");
}

// 根据服务器处理HTTP请求的结果,决定返回给客户端的内容
bool http_conn::process_write(HTTP_CODE ret) {
switch (ret)
{
case INTERNAL_ERROR:
add_status_line( 500, error_500_title );
add_headers( strlen( error_500_form ) );
if ( ! add_content( error_500_form ) ) {
return false;
}
break;
case BAD_REQUEST:
add_status_line( 400, error_400_title );
add_headers( strlen( error_400_form ) );
if ( ! add_content( error_400_form ) ) {
return false;
}
break;
case NO_RESOURCE:
add_status_line( 404, error_404_title );
add_headers( strlen( error_404_form ) );
if ( ! add_content( error_404_form ) ) {
return false;
}
break;
case FORBIDDEN_REQUEST:
add_status_line( 403, error_403_title );
add_headers(strlen( error_403_form));
if ( ! add_content( error_403_form ) ) {
return false;
}
break;
case FILE_REQUEST:
add_status_line(200, ok_200_title );
add_headers(m_file_stat.st_size);
m_iv[ 0 ].iov_base = m_write_buf;
m_iv[ 0 ].iov_len = m_write_idx;
m_iv[ 1 ].iov_base = m_file_address;
m_iv[ 1 ].iov_len = m_file_stat.st_size;
m_iv_count = 2;

bytes_to_send = m_write_idx + m_file_stat.st_size;

return true;
default:
return false;
}

m_iv[ 0 ].iov_base = m_write_buf;
m_iv[ 0 ].iov_len = m_write_idx;
m_iv_count = 1;
bytes_to_send = m_write_idx;
return true;
}

// 由线程池中的工作线程调用,这是处理HTTP请求的入口函数
void http_conn::process() {
// 解析HTTP请求
HTTP_CODE read_ret = process_read();
if ( read_ret == NO_REQUEST ) {
modfd( m_epollfd, m_sockfd, EPOLLIN );
return;
}

// 生成响应
bool write_ret = process_write( read_ret );
if ( !write_ret ) {
close_conn();
}
modfd( m_epollfd, m_sockfd, EPOLLOUT);
}

有限状态机

逻辑单元内部的一种高效编程方法:有限状态机(finite state machine)。

有的应用层协议头部包含数据包类型字段,每种类型可以映射为逻辑单元的一种执行状态,服务器可以根据它来编写相应的处理逻辑。如下是一种状态独立的有限状态机:

STATE_MACHINE( Package _pack )
{
PackageType _type = _pack.GetType();
switch( _type )
{
case type_A:
process_package_A( _pack );
break;
case type_B:
process_package_B( _pack );
break;
}
}

这是一个简单的有限状态机,只不过该状态机的每个状态都是相互独立的,即状态之间没有相互转移。状态之间的转移是需要状态机内部驱动,如下代码:

STATE_MACHINE()
{
State cur_State = type_A;
while( cur_State != type_C )
{
Package _pack = getNewPackage();
switch( cur_State )
{
case type_A:
process_package_state_A( _pack );
cur_State = type_B;
break;
case type_B:
process_package_state_B( _pack );
cur_State = type_C;
break;
}
}
}

该状态机包含三种状态:type_A、type_B 和 type_C,其中 type_A 是状态机的开始状态,type_C 是状态机的结束状态。状态机的当前状态记录在 cur_State 变量中。在一趟循环过程中,状态机先通过getNewPackage 方法获得一个新的数据包,然后根据 cur_State 变量的值判断如何处理该数据包。数据包处理完之后,状态机通过给 cur_State 变量传递目标状态值来实现状态转移。那么当状态机进入下一趟循环时,它将执行新的状态对应的逻辑。

EPOLLONESHOT事件

即使可以使用 ET 模式,一个socket 上的某个事件还是可能被触发多次。这在并发程序中就会引起一个问题。比如一个线程在读取完某个 socket 上的数据后开始处理这些数据,而在数据的处理过程中该socket 上又有新数据可读(EPOLLIN 再次被触发),此时另外一个线程被唤醒来读取这些新的数据。于是就出现了两个线程同时操作一个 socket 的局面。一个socket连接在任一时刻都只被一个线程处理,可以使用 epoll 的 EPOLLONESHOT 事件实现。

对于注册了 EPOLLONESHOT 事件的文件描述符,操作系统最多触发其上注册的一个可读、可写或者异常事件,且只触发一次,除非我们使用 epoll_ctl 函数重置该文件描述符上注册的 EPOLLONESHOT 事件。这样,当一个线程在处理某个 socket 时,其他线程是不可能有机会操作该 socket 的。但反过来思考,注册了 EPOLLONESHOT 事件的 socket 一旦被某个线程处理完毕, 该线程就应该立即重置这个socket 上的 EPOLLONESHOT 事件,以确保这个 socket 下一次可读时,其 EPOLLIN 事件能被触发,进而让其他工作线程有机会继续处理这个 socket。